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Topological classification of binary trees using the Horton-Strahler index
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The Horton-Strahler~HS! index r 5max(i,j)1di,j has been shown to be relevant to a number of physical
~such as diffusion limited aggregation! geological ~river networks!, biological ~pulmonary arteries, blood
vessels, various species of trees!, and computational~use of registers! applications. Here we revisit the enu-
meration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same
index on the ambilateral set of rooted, plane binary set of trees ofn leaves. The ambilateral set is a set of trees
whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to
vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation
to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite
series of nonlinear functional equations, we are able to give a double exponentially converging approximant to
the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form
for the number of such trees.
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I. INTRODUCTION

Trees are ubiquitous structures which appear naturally
large number of physical, chemical, biological, and soc
phenomena, such as river networks, diffusion limited agg
gation, pulmonary arteries, blood vessels and tree spe
social organizations, decision structures, etc. They also
an important role in computer science~use of registers and
computer languages!, in graph theory, and in various meth
ods of statistical physics such as cluster expansions
renormalization group.

In spite of their apparent structural simplicity, and t
large body of scientific work on trees~a sample of which is
found in Refs.@1–23#, and references therein!, they still offer
challenges even related to the quantitative description
their topological structure. At the dawn of the science
complex networks@24#, it is therefore rather important to
have a complete understanding of all the tree structures
their properties.

A tree is defined as a set of points~vertices, nodes! con-
nected with line segments~branches, or edges! such that
there are no cycles or loops~a connected graph withou
cycles!. For the simplest~unlabeled! rooted plane binary
tree, each vertex has exactly three connecting branches
cept for one vertex which is distinguished from all the oth
by having only two connecting branches coined as the r
~R! of the tree, and a certain number of vertices with a sin
connecting branch called the ‘‘leaves.’’ The height of the tr
is defined by the maximum number of levels starting fro
the root~which has height 0!, and it can be calculated as th
maximum number of branches one has to pass to reach
root from its vertices~since the leaves have only one branc
it means that this longest excursion must start from one
the leaves!. The paths from the leaves to the root define
natural direction on the tree~similarly to the river flow!
which is always towards the levels of lower height. A tree
height k we call complete, if it has 2k leaves each being
distancek from the root.

Let us now mention three applications of the mathema
1063-651X/2001/65~1!/016130~10!/$20.00 65 0161
a
l
-

es,
ay

nd

of
f

nd

ex-
s
ot
e
e

he
,
f

a

f

s

of trees which are directly connected to the so-called Hort
Strahler index of the tree, which is the subject of interest
the present paper.

Originally, the Horton-Strahler index of a binary tree w
introduced in the studies of natural river networks by Hort
@8# and later refined by Strahler@9#, as a way of indexing rea
river topologies, since river networks are topologically sim
lar to binary trees. By definition, a leaf has a rank of 0~some
authors associate the value of 1!, and a vertex has a rank o
r 5r ( i , j ) where r ( i , j ) is the index function withi and j
being the ranks of the two connecting vertices from the le
above. When

r ~ i , j !5max~ i , j !1d i , j , ~1!

the index is called the Horton-Strahler~HS! index. The quan-
tity of particular interest is the HS index of the root whic
thus categorizes the topological complexity of the who
tree. Several other quantities can be introduced in relatio
the HS index. Asegmentof orderk @10#, or astreamof order
k @11# is a maximalpath of branches connecting vertices
HS index k, ending in a vertex with higher index. Le
Sk(n,T) denote the number of segments of orderk of a tree
T with n leaves, and̂Lk(n,T)& is the average physical lengt
of a segment of orderk ~the averagê•& is taken on the tree
T). The bifurcation ratiosBk(n,T) are defined asBk(n,T)
5Sk(n,T)/Sk11(n,T), and the length ratios viaLk(n,T)
5^Lk11(n,T)&/^Lk(n,T)&. Horton and Strahler have empir
cally observed that for river networks both theSk(n) and
^Lk(n)& tend to approximate a geometric series,Bk(n)'B
with 3<B<5 and Lk(n)'L with 1.5<L<3. Such net-
works are calledtopologically self-similar@12#. The notion
of HS index is further refined by introducing thebiorder
( i , j ) of a vertex, representing the HS indices of its two ch
dren @13,10,12#, and then studying the ramification matri
with elements related to the number of vertices with a giv
biorder.

Another interesting application of the mathematics of
nary trees and the HS index, is in the description of
©2001 The American Physical Society30-1
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branched structure of diffusion-limited aggregates; see R
@12# and references therein. In this case the structures
grown on a substrate~which can be a point or a plane! by
letting small particles diffuse towards the aggregate wh
they stick indefinitely at their point of first contact with th
cluster. This creates complex and involved branched st
tures, whose topological complexity still remains a challen
ing problem to describe.

Finally, the last application we would like to mention
known as theword bracketing problem@4# which has obvi-
ous implications in computer science. Let us consider
alphabet ofn letters, A5$Y1 ,Y2 , . . . ,Yn% and a wordS
[x1x2x3•••xn21xn , xiPA. A two-bracketing of the wordS
is a partition of its letters~by keeping their order! in groups
of two units enclosed in brackets, where a unit can b
letter or a subpartition enclosed in brackets, such
(x1x2)„x3(x4x5)…, or x1~x2„x3~x4x5!…!, etc. The bracket
(u1u2) between two units may be associated with a multip
cative composition law (u1u2)5u1•u2PA. For example, let
the alphabetA be all the positive integers, and the compo
tion law be the regular multiplication of numbers. Then
bracketing of the multiple productS corresponds to one par
ticular way of calculatingS. A one-to-one correspondenc
can be made immediately to trees: let the lett
x1 ,x2 , . . . ,xn of the wordSbe associated with the leaves
a binary tree. To a particular bracketing ofS it corresponds to
a particular tree constructed by associating a lower level
tex to a bracketing (u1u2) ~one may think of the brackets a
representing the branches of the tree!. The main question is
how many ways are there to calculate such a product. If
assumes that the multiplication law is neither associative
commutative, then the problem is referred to as the Cata
problem; see Ref.@4# for a number of solutions. The numbe
of such bracketings is given by the Catalan numbe

an5
1

m S 2n22
n21 D .

The corresponding set of trees~see Fig. 1 forn54) is in fact
the set of rooted, unlabeled binary plane trees accordin
this bijection.

For later reference, we mention that the generating fu
tion A(j)5(n50

` jnan of the Catalan numbers obeys th
equationA22A1j50, with A(0)50, so

A~j!5
1

2
~12A124j!. ~2!

The power seriesA(j) converges within a disk of radiu
ac51/4.

FIG. 1. The set of rooted, unlabeled binary plane trees co
sponding to all the possible noncommutative, nonassociative br
etings of the four letter wordabcd, n54.
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The problem of enumerating trees becomes more diffic
if the composition law is commutative, which was studied
Wedderburn and Etherington~WE! @5–7#. In the tree lan-
guage, this means that two trees are considered identic
after a number of successive reflections with respect to
vertical axes passing through the vertices they can be tr
formed into each other and in this case they are said to
homeomorphic@3#. For the example shown in Fig. 1, ther
are only two such trees, since trees 1!, 2!, 4!, and 5! can be
transformed into each other. The trees that cannot be tr
formed into each other are called nonhomeomorphic. The
of nonhomeomorphic trees is called the set ofambilateral
trees,@14,11#. Let the number of such trees withn leaves be
denoted bywn . The generating function~GF! defined as
W(j)5(n50

` jnwn obeys the nonlinear functional equation

W~j!5j1
1

2
W~j!21

1

2
W~j2!, ~3!

which has extensively been studied by Wedderburn@5#. Otter
@3#, studying a more general counting problem where
vertices can have at mostm branches, comes to the conclu
sion that for the ambilateral trees, ifn is large we have

wn;cn23/2gn, ~4!

where g52.483 253 5•••. The method developed by Otte
gives an iterative approach toc andg. For example,g is

g5 lim
n→`

sn
22n

, ~5!

wheres052, sn521sn21
2 so that forn54 one already ob-

tains an extremely close value ofg.(209 091 8)2
24

. Later,
Bender developed a more general approach@15# deriving the
same results. The coefficientc in Eq. ~4! can also be com-
puted:c50.318 776 62•••.

The more practical application of the bracketing proble
within computer science is the computation of arithmetic e
pressions by a computer. A general arithmetic expression
volving only binary operators can simply be mapped ont
binary tree, called the syntax tree, which has as leaves
operands and the inner vertices the operators. A comp
traverses this tree from the leaves towards the root an
uses registers to store the intermediate results. In gen
there are many ways of traversing such a tree, and the
gram that uses theminimal number of registers is the mos
efficient, or optimal, one. Ershov has shown@16# that the
optimal code will use exactly as many registers to store
intermediate results as the HS index of the associated sy
tree.

In the present paper we investigate how the HS index
distributed on both the rooted, unlabeled, plane binary se
trees, and on the ambilateral set of binary trees. We
answer this question on the rooted, unlabeled, plane bin
set, since it is simpler, but it will also provide us with
technique that can be extended to tackle the problem for
ambilateral set. For this set, the question was answered
Flajolet, Raoult, and Vuillemin@17#, with a method some-
what similar to the one presented here. The enumera

-
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problem of the HS index on the ambilateral set is, howev
inherently more difficult since it involves functional equ
tions with nonlinear dependence in the argument simila
Eq. ~3!, and therefore an explicit solution in a closed for
becomes impossible to attain. The derivation of an appro
mant formula for the number of ambilateral trees sharing
same HS index at the root is the main result of this pape

The paper is organized as follows. First we present
derivation of the enumeration problem for the HS index
the unlabeled set in Sec. II, and then use this method
derivation from this case to develop a technique that can
used to attack the enumeration problem on the ambilat
set in the asymptotic limit, presented in Sec. III. Section
is devoted to conclusions and outlook.

II. DISTRIBUTION OF THE HS INDEX ON
THE UNLABELED SET

Let us observe that the rootR of the tree has always two
subtrees attached to it via the two branches, withk and n
2k leaves, respectively,k51,2, . . . ,n. Let Nn

(r ) denote the
number of unlabeled trees withn leaves that share the sam
HS indexr at the root. A recursion is found for this numb
in the light of the observation above:

Nn
(r )5 (

k51

n21 H Nk
(r 21)Nn2k

(r 21)1Nk
(r )(

j 50

r 21

Nn2k
( j ) 1Nn2k

(r ) (
j 50

r 21

Nk
( j )J

~6!

with the conventionsN0
(r )[0, Nn

(0)[dn,1 , N1
(r )5d r ,0 . If the

generating function for the variablen is defined asDr(j)
5(n50

` jnNn
(r ) , then it obeys

Dr5Dr 21
2 12Dr (

j 50

r 21

D j , r>1, D05j. ~7!

Next we give an exact solution to Eq.~7!. Let us introduce
the sum Br[( j 50

r 21D j , r>1, B050, B15j. Then Dr

5Br 112Br , and after rearranging the terms, Eq.~7! be-
comes Gr5Gr 21, where Gr5Br

21Br 11(122Br). This
means thatGr5G05j, i.e.,

Br
21Br 11~122Br !5j, r>0. ~8!

Note that the left hand side of Eq.~8! remains invariant to
Br°12Br which is another solution of Eq.~8!. However,
since in the case of the HS indexB050, this latter solution
has to be dropped. If we make 2Br[12Cr , Eq. ~8! simpli-
fies to Cr

222CrCr 1154j21, which after dividing both
sides by 4j21, and introducingZr[Cr /A4j21, becomes

Zr 115
Zr

221

2Zr
. ~9!

Let us now write Zr5cot(vr), such that v0

5arctan(A4j21). Then Eq. ~9! becomes cot(vr11)
5cot(2vr) which leads tov r 1152v r1pm, mPZ, and which
in turn is solved easily. ThusZr5cot(2rv0), so one finally
obtains
01613
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Dr~j!5
A4j21

2sin~2r 11arctanA4j21!
. ~10!

Equation~10! is the exact solution to Eq.~7! in the complex
j plane. On the real axis, within the radius of convergenceac
the above expression takes the formDr(j)
5A124j/@2sinh(2r11arctanA124j)#, j,ac51/4. Since
within the convergence disk one must have( r 50

` Dr(j)
5A(j), we just obtained the identity@using Eq.~2!#

11(
r 51

`
1

sinh~2rx!
5coth~x!, x.0. ~11!

This identity can be checked to hold via more direct metho
@25#. The singularities ofDr(j) lie on the positive real axis
at

jk
(r )5

1

4cos2~kp/2r 11!
,k51, . . . ,2r21 ~12!

with an additional singularity at infinity~corresponding to
k52r). We certainly havejk

(r ).ac . On the other hand, if
one simply iterates Eq.~7! we obtain

Dr~j!5
j2r

2r Pr~j!
, ~13!

where Pr(j) is a polynomial inj of order 2r21: P1(j)
52212j, P2(j)5P1(j)(22122j1j2), P3(j)
5P2(j)(22124j110j228j31j4), . . . , etc. One can find
an explicit form for this polynomial from the general solu
tion ~10! if one invokes the identity @26# sin(nx)
5nsinxcosx)k51

(n22)/2@12sin2x/sin2(kp/n)#, so that Eq.~13! is

recovered with:Pr(j)5)k51
2r21cot2(kp/2r 11)(jk

(r )2j). It is

easy to show, however, that)k51
2r21cot2(kp/2r 11)51, so the

polynomial simplifies to

Pr~j!5 )
k51

2r21

~jk
(r )2j!, ~14!

an expression valid on the whole complexj plane. Based on
the explicit solution we obtained, one can give an exact fo
to the distribution of the HS index on the unlabeled set
trees, by inverting the generating function via

Nn
(r )5

1

2p i R dj

jn11
Dr~j!5

1

2p i R dj

jn11

j2r

2r Pr~j!
.

~15!

One can write

1

2r Pr~j!
5 (

j 51

2r21 Aj
(r )

j j
(r )2j

, ~16!
0-3
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ZOLTÁN TOROCZKAI PHYSICAL REVIEW E 65 016130
where Aj
(r )522r)k51

kÞ j

2r21
(jk

(r )2j j
(r ))21, j 51, . . . ,2r21. By

Cauchy’s theorem the integrals in Eq.~15! are readily per-
formed, and one obtains

Nn
(r )5H (

j 51

2r21

Aj
(r )@j j

(r )#2(n22r11), n>2r

0, 0<n<2r21.
~17!

From Eq. ~16! it follows that ( j 51
2r21Aj

(r )/j j
(r )522r /Pr(0)

51. To obtain the last equality we used the form~14! and
~12!. ThusN2r

(r )
51, r 51,2, . . . . ThenumbersAj

(r ) can be
calculated as follows. Observe that

Aj
(r )5 lim

j→j j
(r )

j j2j

2r Pr~j!
52

1

2r Pr8~j j
(r )!

, ~18!

where we used the L’Hoˆpital rule in the last equality. On the
other hand, from Eqs.~13! and ~10! it follows that 2r Pr(j)
52j2r

sin(2r11arctanA4j21)/A4j21. Taking the derivative
of this equation at the pointj j

(r ) , and inserting it in Eq.~18!
it yields

Aj
(r )5~21! j 11

4j j
(r )21

2r 11@j j
(r )#2r21

. ~19!

Thus we obtain from Eq.~17! the more explicit form,

Nn
(r )5

1

2r 11 (
j 51

2r21

~21! j 11
4j j

(r )21

@j j
(r )#n

, n>2r , ~20!

or using Eq.~12!,

Nn
(r )5

4n

2r 11 (
j 51

2r21

~21! j 11sin2S j p

2r 11D FcosS j p

2r 11D G 2n22

,

~21!

an expression derived by Flajoletet al. @17#. Following this
paper@17#, our polynomialsPr can be simply connected t
the Tchebycheff polynomialU @26#, via the relationPr(j)
522rj2r21/2U2r 1121@1/(2Aj)#.

If one employs the Poisson resummation formula
functions defined on a compact support~see Appendix B in
Ref. @27#! on Eq. ~21!, an equivalent combinatorial expre
sion can be derived in the form

Nn11
(r ) 5(m51

` ¹2F S 2n
n1kD G~k!uk511(2m21)2r,

where (¹ f )(k)5 f (k)2 f (k21) is the finite difference op-
erator. For a different method, see Ref.@17#.

Scaling limits.Next we briefly present the results of a
asymptotic analysis on theNn

(r ) numbers. SinceNn
(r ) is an

enumeration result, it typically contains several scaling li
its. In physical processes, during the growth of branch
01613
r

-
d

structures, usually only one of these limits is selected, an
frequent cases this limit has self-similar properties~such as
for diffusion-limited aggregation~DLA !, or for random gen-
eration of binary trees@18#!. By definition, the family of
trees that obey lim

r→`
(ln@n(r)#)/r5const[ ln B is called to-

pologically self-similar@12#, whereB is thebifurcation num-
ber.

~i! n→` andr fixed. In this case the first term in Eq.~21!
dominates the sum and the asymptotic behavior is given
Nn

(r );22r 21tan(p/2r 11)en ln[4cos2(p/2r 11)] . The rate of the ex-
ponential growth is a number between ln 2 and 2 ln 2.

~ii ! n→`, r→`, An/2r→`. Here the first term in Eq.
~21! is still dominant~the rest being exponentially small co
rections! and yields Nn

(r );p2223(r 11)en(2 ln 22p2/4r 11). If
An/2r diverges withr slower than exponential, we have to
pological self-similarity withB54.

~iii ! n→`, r→`, An/2r→d, with some 0,d,`. In this
case the rest of the terms in Eq.~21! ~after the first has been
factored out! are of the typej 2e2( j 21)p2d2

and the final ex-
pression is Nn

(r );A(d)4nn23/24n. The topological self-
similarity is obvious withB54. The factorA(d) is given by
A(d)5p2e2p2d2

(12e2p2d2
)/(11e2p2d2

)3.
~iv! n→`, r→`, An/2r→0, andn/2r→`. In this case

the analysis is performed easier from the combinatorial
pression ofNn

(r ) and yieldsNn
(r );p21/2n25/2en2 ln 224r/n.

III. DISTRIBUTION OF THE HS INDEX ON
THE AMBILATERAL SET

Let us now analyze the same question on the set of
bilateral trees, and denote the number of ambilateral tr
with n leaves and HS indexr by Mn

(r ) . We certainly must
have the relation

(
r 50

`

Mn
(r )5wn . ~22!

Figure 2 gives the distribution of the HS index forn up to
32 andr 52,3,4,5. We can check easily thatMn

(0)5dn,1 , and
Mn

(1)512dn,1 , so for simplicity these are not represented
the figure.

The numbersMn
(r ) obey slightly more complicated recur

rence relations since now the counting has to be done o
more restricted set. We must distinguish between odd
evenn values. However, the two cases can be combined
one, if the conventionM n

(r )50 for n noninteger is adopted
The corresponding recurrence relation becomes

Mn
(r )5 (

0<k, j <n
dk1 j ,nFMk

(r 21)M j
(r 21)1(

s50

r 21

~Mk
(r )M j

(s)

1Mk
(s)M j

(r )!G1Mn/2
(r ) (

s50

r 21

Mn/2
(s)

1
1

2
Mn/2

(r 21)~11Mn/2
(r 21)!. ~23!
0-4
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The generating functionVr(j)5(n50
` jnMn

(r ) will thus obey

Vr~j!5
1

2

@Vr 21~j!#21Vr 21~j2!

12(
s50

r 21

Vs~j!

, r>1, ~24!

andV0(j)5j. As a check for the correctness of Eq.~24!, let
us see if we recover the identity( r 50

` Vr(j)5W(j) @which
follows from Eq. ~22!#. Equation ~24! is equivalent to
2Vr(j)22(s50

r 21Vs(j)Vr(j)5@Vr 21(j)#21Vr 21(j2). Intro-
duce the temporary variableG(j)5( r 50

` Vr(j) and
sum both sides of the equation overr, r 51,2, . . . ,̀ .
One obtains 2(G(j)2j)22( r 51

` (s50
r 21Vs(j)Vr(j)

5( r 50
` @Vr(j)#21G(j2). Using the identity 2( r 51

` (

FIG. 2. Particular values for the number of ambilateral tre
with n leaves and HS indexr. The shaded entries mean that there
no such tree.
01613
s50
r21VsVr5((r50

` Vr)
22(r50

` Vr
2 , one findsG(j)5j1 1

2 @G(j)#2

1 1
2 G(j2), which is precisely Eq.~3!, showing thatG(j)

5W(j), i.e., the relation( r 50
` Vr(j)5W(j) holds, indeed.

In contrast to the previous case, the functional recurre
~24! cannot be treated in an exact analytical fashion due
the functional dependence onj2. However, one can derive
the asymptotic behavior and make statements that will l
to rather close approximations of theMn

(r ) numbers. It is
instructive to look at a few particular values, first:

V1~j!5
j2

12j
,

V2~j!5
j4

~122j!~12j2!
, ~25!

V3~j!5j8
122j1j212j323j4

~122j!~122j2!~12j4!~123j14j32j4!
.

Inverting V2(j), one obtains: Mn
(2)5@2n2123

1(21)n24#/6, n>4, which can be checked to hold; see F
2. The result from the inversion ofV3(j) is already so com-
plicated that it is not worth presenting. As the indexr in-
creases, the polynomial expressions become more and m
involved. Figure 3 shows the functionV8(j) in the interval
@22.0,2.0#.

For everyr, the power series forVr(j) has non-negative
coefficients,Mn

(r )>0. Based on a classic theorem of compl
analysis, this means that on the circle of convergence
radius a r.0, there will be a singularity ofVr(j) at j
5a r . Next we show that we have the ordering 0,a r 11
,a r,1 for r>2, and the limit lim

r→`
a r exists and it is

equal to a[1/g50.402 697 503 6•••. We shall use math-
ematical induction to prove the ordering. From the particu
examples above it follows thata250.5, a350.424 507•••.

s

FIG. 3. The generating functionV8(j) on the real axis. The
function was evaluated in more than 1.33105 points, and repre-
sented by dots.
0-5
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Let us now assume thata j,a j 21,1 for all j <r , j >2. We
will show that a r 11,a r . Note that the radius of conver
gence forVj (j

2) is Aa j.a j , if a j is less than unity. By
reductio ad absurdum, let us assume first, thata r 11.a r .
This means, thatVr 11(j) is analytic ina r . From Eq.~24!,

Vr 11~j!5
Vr

2~j!1Vr~j2!

12V0~j!2•••2Vr~j!
. ~26!

By the argument above,Vr(j
2) is analytic ina r ~its radius of

convergence isAa r.a r , since by assumptiona r,a r 21
,•••,a251/2,1!. In the denominator of Eq.~26!, all
functionsVj , j 50,1, . . .r 21 are analytic ina r , because by
assumption they all have radii of convergence strictly lar
thana r . However,Vr is singular ina r , and the singularities
do not cancel in the numerator and denominator of Eq.~26!,
and thusVr 11 is singular ina r , a contradiction. We are lef
to prove that a r 115a r cannot hold. Let us denoteBr

5(s50
r Vs . Again, we assume thata r 115a r is true. It is

easy to show that for anyfinite r, uVr(a r)u5`. This means
from the recurrence relation that

Br 21~a r !51 ~27!

@in the numerator of Eq.~24! we have only functions analytic
at a r#. SinceVr 11(j)5@Vr

2(j)1Vr(j
2)#/@12Br(j)#, from

the assumptiona r 115a r it would follow that the equation
Br(x)51 cannothave any solutions (Vr 11 is analytic within
the circle of convergence! in the interval 0,x,a r . @Note
that in the interval 0,x,a r , the numerator Vr

2(j)
1Vr(j

2) cannot be zero, since the power seriesVr has only
positive coefficients.# The equationBr(x)51 is equivalent to
Br 21(x)1Vr(x)51. However, from Eq.~24! 12Br 21(x)
5@Vr

2(x)1Vr(x
2)#/Vr(x). Thus the equation

Vr
2~x!5Vr 21

2 ~x!1Vr 21~x2! ~28!

should have no solution in 0,x,a r . If x is arbitrarily close
to a r , thenVr

2(x) is arbitrarily large. However, sincea r 21

.a r , Vr 21
2 (x), andVr 21

2 (x2) are both bounded from above
Thus, for x sufficiently close to a r , we have Vr

2(x)
.Vr 21

2 (x)1Vr 21(x2). On the other hand, the HS index of
treeT equals to the height of the largest, complete, balan
tree embedded inT. This means thatMn

(r )50 for n
50,1,2, . . . ,2r21. Also, M2r

(r )
51. In other words, one mus

haveVr(x)5x2r
@11O(x)#.

This means thatVr 21
2 (x)5x2r

@11O(x)#, Vr 21(x2)

5x2r
@11O(x2)#, and Vr

2(x)5x2r
x2r

@11O(x)#. Since

Vr 21
2 (x)1Vr 21(x2)52x2r

@11O(x)#, there will always be
an x.0, (x,1), sufficiently close to zero, such thatVr

2(x)
,Vr 21

2 (x)1Vr 21(x2). Therefore there must exist an 0,x
,a r , for which Eq. ~28! holds, which is a contradiction
Thus we have proven that 0,a r 11,a r,1, for all r>2. As
a matter of fact we have also shown that the radii of conv
gence satisfy

Vr
2~a r 11!5Vr 21

2 ~a r 11!1Vr 21~a r 11
2 !, r>1. ~29!
01613
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Since the seriesa r is monotonically decreasing, and bound
from below, the limita5 lim

r→`
a r exists.

We have shown that( r 50
` Vr(j)5W(j). Since the radius

of convergence for the left hand side is the minimum of
the radii of the terms in the summation, i.e.,a, it must equal
to the radius of convergence forW(j), which, as shown by
Otter and Bender is 1/g, lim

r→`
a r5a51/g

50.402 697 503 6••• . Taking the limitr→` in Eq. ~27!, we
get

W~a!51 ~30!

@since by definitionBr5(s50
` Vs , so lim

r→`
Br5W(j)#. Or,

using Eq.~3!,

W~a2!5122a, ~31!

an identity also shown by Bender. Equations~31! and~3! can
simply be combined to give the iterative computation ofa in
the form already mentioned in the Introduction, as follows
we make the temporary notation

U~j![@12W~j!#/Aj, ~32!

Eq. ~3! takes the form

U~j2!521U2~j!, ~33!

and Eq.~31! simplifies to

U~a2!52. ~34!

Let S(x)521x2. Then, from Eq.~33! U(j2)5S@U(j)#, or
U(j)5S@U(j1/2)#5S$S@U(j1/4)%#5S$•••S@U(j22n

)#•••%,
where there are a total ofn compositions for theS function,
n arbitrary. Let us now choosej5a2n11

. This means
U(a2n11

)5S$•••S@U(a2)#•••%5S$•••@S(2)#•••%, by
virtue of Eq. ~34!. From Eq. ~32!, U(a2n11

)5@1
2W(a2n11

)#/a2n
. We have shown previously thata,1 ~it

is the limit of the monotonically decreasing seriesa r,1),
therefore we have

a5 lim
n→`

S 12W~a2n11
!

sn
D 22n

5 lim
n→`

sn
222n

~35!

since W(a2n11
)→W(0)50, and wheresn5S(sn21), s0

52, just as in the Introduction. The convergence is dou
exponential, very fast.

As in Sec. II, the asymptotic behavior of theMn
(r ) num-

bers for relatively largen andr is governed by the innermos
singularity ofVr(j) on the real axis. The graph ofV8 shown
in Fig. 3 suggests that the generating function is, in fact, w
behaved in a certain interval to the right of the radius
convergencea8; see also Fig. 4. The existence of this inte
val comes from the fact that the singularities of the term w
nonlinear argumentVr 21(j2) in the numerator of Eq.~24!
kick in only beyond the circle of convergence ofVr 21(j2),
which is Aa r 21.a r 21. Thus in the intervala r,x,Aa r 21
0-6
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the term with the nonlinear argument is analytic, which u
mately is responsible for this nice behavior. Becausea
,a r 21, for convenience we shall define the interval of th
nice behavior to beI 5@a,Aa). In order to exploit this ob-
servation, we shall first rewrite the recurrence relation~24!.
Let us denoteHr(j)512(s50

r 21Vs(j). With this notation, Eq.
~24! takes the formGr(j)5Gr 21(j), r>1, whereGr(j)
5Hr

2(j)22Hr(j)Hr 11(j)1Hr(j
2). This leads to the new

recurrence:

Hr
2~j!22Hr~j!Hr 11~j!1Hr~j2!52j, ~36!

H0(j)51. This would be exactly solvable if it were not fo
the dependence on the nonlinear argumentj2. Note the re-
semblance to Eq.~8!. Let hr(j)52j2Hr(j

2), which is an
analytic function in I. We also have Dhr(j)5hr(j)
2hr 21(j)5Vr(j

2)5j2r
@11O(j2)#, the latter equality be-

ing shown previously. This shows that in the intervalI, the r
dependenceweakens extremely fast, double exponentially
with increasingr. As a matter of fact, an upper estimate i

Dhr~j!<a2r 21
. ~37!

In particular, Dh3(j)<0.0263, Dh4(j)<0.000 691 6,
Dh5(j)<4.7931027, Dh6(j)<2.28310213, Dh7(j)
<5.22310226, etc. Therefore, from the point of view of th
asymptotic behavior, thehr functions can be replaced b
their asymptotic expression~as r→`):

h~j!5W~j2!12j21. ~38!

Figure 5 shows the functionshr on the interval I for r
51,2,3,4,5,6.

Thus, instead of Eq.~36! we will consider

H̄r
2~j!22H̄r~j!H̄r 11~j!5h~j!. ~39!

The recurrence~39! in turn is easily solved in the way show
in Sec. I. The result is

FIG. 4. A magnified region of Fig. 3. The arrows indicate t
positionsa50.402 69••• andAa50.634 58••• on the real axis.
01613
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H̄r~j!5Ah~j!cotF2r 2r 0arctanS Ah~j!

H̄r 0
~j!D G , ~40!

where r 0 for the moment is an arbitrary~positive integer!
index. Recurrence~39! will become a good approximation t
the recurrence~36! from an indexr 0 on. The largerr 0 is the
more accurate the approximation. Recurrence~39! is applied
then with initial conditionH̄r 0

(j)5Hr 0
(j), which for mod-

est r 0 values can be obtained by iterating Eq.~36! r 0 times.
What is the error we make when one replaceshr 0

(j) with

h(j) on I? Summing the differences~37! from r 011 to in-
finity, one obtains the estimate h(j)2hr 0

(j)

<a2r 0(m50
` a2r 0(2m21),a2r 0/(12a2r 0). Thus, for example,

h(j)2h5(j) is smaller than 1027, h(j)2h6(j) is smaller
than 10213, etc.

Therefore we can finally write onI:

Vr~j!.
AW~j2!12j21

sin$2r 112r 0arctan@AW~j2!12j21/Hr 0
~j!#%

,

r .r 0 , jPI . ~41!

In Fig. ~6! we plot the right hand side~rhs! of Eq. ~41!
and theVr function from iterating Eq.~24!. Note that the
approximation is very good, and it becomes virtually ind
tinguishable from the true function the closerj is to a.
Larger r 0 values will also give better approximations, sin
the approximation is only applied from ther 0 index on.
However,r 0 cannot be taken too high for approximation pu
poses, since it assumes that the exact expression ofHr 0

~or

Vr 0
) is known. This makes only the modestr 0 values~less

than 5! useful. On the other hand, expression~41! is very

FIG. 5. The functionshr(j) are analytic onI. This figure shows
hr(j) for r 51,2,3,4,5,6. The convergence onI to h(j) is double
exponentially fast. The thick vertical lines delimit the edges of t
interval I. Close toa, thehr functions cannot be distinguished onI
for r>3. To the right fromI the hr functions develop singularities
The point Aa is a left accumulation point for the series of th
left-most singularities ofhr(j) as r→`.
0-7
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practical in analyzing the singularities ofV and give rather
close approximant expressions to these singularities. In
ticular, we see that within the intervalI, Eq. ~41! preserves
the property that ifa r 8 is a singularity ofVr 8 ~or a zero of
Hr 8) then it is a singularity ofVr ~or a zero ofHr), whenever
r .r 8. If one is interested in the asymptotic behavior, the
more tractable expression can be derived for the rhs of
~41!: the functionh(j) is analytic on the intervalI, and since
already for modestr values, the innermost singularity ofVr
~denoteda r) is extremely close toa, one can safely replac
h(j) in this neighborhood byh(j).h8(a)(j2a).

This leads to the approximant

Vr~j!.Kr~j![
mAj2a

sin@2r 11arctan~uAj2a!#
, jPI

~42!

for sufficiently larger ~here ‘‘large’’ meansr>4) where

m5Ah8~a!, u5
Ah8~a!

2r 0Hr 0
~a!

. ~43!

Next, we computeh8(a). One can use a very similar metho
to the one employed to obtain Eq.~35!, to give

h8~a!5 lim
n→`

sn

s0s1•••sn21
53.171 055 6•••, ~44!

so, m51.780 745 815••• . If one computesu for r 053, we
have H3(a)5(123a14a32a4)/(122a2a212a3)
50.164 518•••, and thusu51.353 002 2••• . If we were to
use r 054, then one would obtainH4(a)50.082 262, sou
51.352 952 924 5 and slightly improve the approximati
on u. No significant improvement will be obtained wit

FIG. 6. The trueVr(j) function ~dashed line! from iterating Eq.
~24!, and the approximation in Eq.~41! ~solid line! for r 58 with
r 053, andr 53 with r 052 ~the inset!.
01613
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larger r 0 values. Figure 7 shows the agreement of the fo
given in Eq.~42!. For clarity, we defined the functionf (z)
given by

f ~z!5
m

u

tanS z

2r 11D
VrFa1u22tan2S z

2r 11D G . ~45!

Here we use the trueVr function using numerical iteration o
Eq. ~24!, and evaluate it in the points j5a
1u22tan2@z/(2r 11)#. If the approximation~42! is good,
then one should havef (z)5sin(z). As seen from Fig. 7, the
approximation is already excellent forr 54 close to a
~which corresponds to thez50 point in this plot!. The inter-
val I in these transformed coordinates correspon

to @0,2r 11arctan(uAAa2a)#5(0,0.577 435 48632r 11).
There are no fitting parameters, we used form and u the
values derived above.

In order to obtain the approximation to thenumber Mn
(r )

of ambilateral trees with the same HS index at the root,
will have to invert Eq.~42!. The singularities of the rhs o
Eq. ~42! are given by

jk
(r )5a1u22tan2S kp

2r 11D ,k51,2,3, . . . ,2r21 ~46!

@at the moment we do not care whether some of the sin
larities will fall outside the intervalI, we just simply want to
invert Eq. ~42!, and then at the end keep only those ter
from the final expression that were generated by the sin
larities within I ].

In a similar manner to the previous section, we first bri
Kr to an inverted polynomial form:

Kr~j!5
m@11u2~j2a!#2r

2r 11u2r 1121Qr~j!
, ~47!

FIG. 7. The goodness of Eq.~42!. For m and u we used the
values derived in the text.
0-8
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where Qr is the polynomial:Qr(j)5)k51
2r21(jk

(r )2j). The
case from the previous Sec. II corresponds tom51,u52,
anda51/4. Thus if we denote byM̄n

(r ) the numbers coming
from the inversion ofKr(j), then

M̄n
(r )5

m

u2r 1121

1

2p i R dj

jn11

@11u2~j2a!#2r

2r 11Qr~j!
. ~48!

We have

m

2r 11u2r 1121Qr~j!
5 (

j 51

2r21 Aj
(r )

j j
(r )2j

, with

Aj
(r )5

m

2r 11u2r 1121 )
k51
kÞ j

2r21
1

jk
(r )2j j

(r )
.

~49!

After performing the integrals, one obtains

M̄n
(r )5 (

j 51

2r21

Aj
(r )@j j

(r )#2n21 (
m50

min$n,2r % S 2r

mD ~1

2au2!2r2m@u2j j
(r )#m. ~50!

This expression shows that theM̄n
(r ) may only approximate

theMn
(r ) numbers in a certain limit. This is seen from the fa

that while one must haveMn
(r )50 for n,2r , andM2r

(r )
51,

this is not respected by Eq.~50! ~it would only be respected
if a5u22, however, this is not the case, and the reason
hind this discrepancy is the neglected nonlinearity from
calculations!. The limit, in which the approximation become
good, is forr large ~it meansr>4) andn@2r . In this case
the sum overm can be performed, and one obtains

M̄n
(r )5 (

j 51

2r21

Aj
(r )@j j

(r )#2n21@11u2~j j
(r )2a!#2r

. ~51!

TheAj
(r ) numbers can be calculated in exactly the same w

we did in the previous section. This leads to

Aj
(r )5~21! j 11

m~j j
(r )2a!

2ru@11u2~j j
(r )2a!#2r21

. ~52!

Inserting it into Eq.~51!, it yields

M̄n
(r )5

m

2ru
(
j 51

2r21

~21! j 11
@11u2~j j

(r )2a!#~j j
(r )2a!

@j j
(r )#n11

.

~53!

As a check to the correctness of Eq.~53! we can takem
51,u52, anda51/4 from the unlabeled case, to obtain E
~20!. Equation~53! explicitly shows the contribution of eac
01613
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singularity. However, if we want to approximate theMn
(r )

numbers, we should also account for the conditionj j
(r )

,Aa. Using the expression~46!, this leads toj ,Jr , where

Jr5
2r 11

p
arctan~uAAa2a!.~0.183 803 525 0••• !32r 11.

~54!

Thus, using again Eq.~46!,

M̄n
(r )5

m

2ru3 (
j 51

[Jr ]

~21! j 11

tan2S j p

2r 11D F11tan2S j p

2r 11D G
Fa1u22tan2S j p

2r 11D G n11 .

~55!

When the asymptotic limit is generated by the innermost r
a r.j1

(r ) , i.e., by the first term in Eq.~55!, one obtains for
the topologically self-similar ambilateral trees, the scali
behavior

M̄n
(r );

2mp2d3

au3
e2p2d2/au2

n23/2gn ~56!

and thereforeB5g51/a52.483 253 5•••.
Let us now see how well formula~55! approximates the

Mn
(r ) numbers. To do this, we shall define the errorQn

(r )

5@ uM̄n
(r )2Mn

(r )u/Mn
(r )#3100%. For example, from the Tabl

in Fig. 2, M32
4 5413 083 691. The formula above give

M̄32
(4)5445 781 858, and thusQ32

(4)57.915•••%. Further error
values: Q100

(5)55.341 32 . . . %, Q800
(5)50.053 91•••%, Q800

(6)

50.003 551•••%.

IV. CONCLUSIONS AND OUTLOOK

Combinatorial enumeration of trees is typically difficult
solve when the set under enumeration obeys symme
exclusion principles, such as for the ambilateral case trea
here. These symmetry-based constraints may arise in rea
situations and thus forces us to enumerateclassesof subsets
of trees. In the ambilateral case a class is defined as b
formed by those binary trees that have the same numbe
leaves and HS index at the root and can be obtained
from another via successive reflections with respect to
nodes of the tree. Certainly, the symmetry operation defin
the class must be an invariant transformation of the topolo
cal index ~HS in our case!. Another example of such
symmetry-operation-generated class enumeration is the
of the ‘‘leftist trees’’ playing an important role in the repre
sentation ofpriority queues, shown by Crane@19#, followed
by Knuth@20#, who gives their explicit definition. An elegan
enumeration for the leftist trees, using generating funct
formalism, was only given very recently by Nogueira@21#.

The existing solutions to such class enumerations on t
~such as ours and that of Flajoletet al. @17# and of Nogueira
@21#! are obtained via methods tailored for the particularit
0-9
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of the set and symmetry operation in question. It is desira
to have, however, at least on a formal level, a general
compassing theory of class enumerations of topological
dices. In this direction, powerful methods such as that of
antilexicographic order method developed by Erdo˝s and
Székely @22# or the method of bijection to Schro¨der trees
developed by Chen@23# may turn out to be effective after
suitable extension to include topological indices such as
Horthon-Strahler index. This, however, stands as an o
problem.
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