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The Horton-StrahlefHS) index r =max(,j)+ & ; has been shown to be relevant to a number of physical
(such as diffusion limited aggregatipigeological (river networks, biological (pulmonary arteries, blood
vessels, various species of trgemnd computationaluse of registesapplications. Here we revisit the enu-
meration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same
index on the ambilateral set of rooted, plane binary set of treedexves. The ambilateral set is a set of trees
whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to
vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation
to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite
series of nonlinear functional equations, we are able to give a double exponentially converging approximant to
the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form
for the number of such trees.
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[. INTRODUCTION of trees which are directly connected to the so-called Horton-
Strahler index of the tree, which is the subject of interest of
Trees are ubiquitous structures which appear naturally in &e present paper.
large number of physical, chemical, biological, and social ~Originally, the Horton-Strahler index of a binary tree was
phenomena, such as river networks, diffusion limited aggreintroduced in the studies of natural river networks by Horton
gation, pulmonary arteries, blood vessels and tree speciel$3] and later refined by Strahlg®], as a way of indexing real
social organizations, decision structures, etc. They also plafjver topologies, since river networks are topologically simi-
an important role in computer scien¢ese of registers and lar to binary trees. By definition, a leaf has a rank ¢s0me
computer languaggsin graph theory, and in various meth- authors associate the value of and a vertex has a rank of
ods of statistical physics such as cluster expansions anid=r(i,j) wherer(i,j) is the index function withi and |
renormalization group. being the ranks of the two connecting vertices from the level
In spite of their apparent structural simplicity, and the above. When
large body of scientific work on treda sample of which is
found in Refs[1-23], and references thergjrthey still offer r(i,j)=maxi,j)+a;, (1)
challenges even related to the quantitative description of
their topological structure. At the dawn of the science ofthe index is called the Horton-StrahlgtS) index. The quan-
complex networkg24], it is therefore rather important to tity of particular interest is the HS index of the root which
have a complete understanding of all the tree structures arifius categorizes the topological complexity of the whole
their properties. tree. Several other quantities can be introduced in relation to
A tree is defined as a set of poirtigertices, nodescon-  the HS index. Asegmenbf orderk [10], or astreamof order
nected with line segmentéranches, or edgesuch that Kk [11] is amaximalpath of branches connecting vertices of
there are no cycles or loop@ connected graph without HS index k, ending in a vertex with higher index. Let
cycles. For the simplest(unlabeled rooted plane binary Sk(n,T) denote the number of segments of orleaf a tree
tree, each vertex has exactly three connecting branches, eXwith nleaves, andL,(n,T)) is the average physical length
cept for one vertex which is distinguished from all the othersof a segment of ordek (the averag€-) is taken on the tree
by having only two connecting branches coined as the rool). The bifurcation ratios B,(n,T) are defined a#3,(n,T)
(R) of the tree, and a certain number of vertices with a single= S, (n,T)/S,+1(n,T), and the length ratios via,(n,T)
connecting branch called the “leaves.” The height of the tree= (L, 1(n,T))/{L(n,T)). Horton and Strahler have empiri-
is defined by the maximum number of levels starting fromcally observed that for river networks both tisg(n) and
the root(which has height ) and it can be calculated as the (L,(n)) tend to approximate a geometric seri¢g(n)~ 53
maximum number of branches one has to pass to reach theith 3<B<5 and £,(n)~ L with 1.5<£<3. Such net-
root from its verticegsince the leaves have only one branch,works are calledopologically self-similarf12]. The notion
it means that this longest excursion must start from one 0bf HS index is further refined by introducing tH®order
the leaves The paths from the leaves to the root define a(i,j) of a vertex, representing the HS indices of its two chil-
natural direction on the treésimilarly to the river flow  dren[13,10,13, and then studying the ramification matrix,
which is always towards the levels of lower height. A tree ofwith elements related to the number of vertices with a given
heightk we call complete if it has 2¢ leaves each being a biorder.
distancek from the root. Another interesting application of the mathematics of bi-
Let us now mention three applications of the mathematicsary trees and the HS index, is in the description of the
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The problem of enumerating trees becomes more difficult

if the composition law is commutative, which was studied by
R R R R R Wedderburn and EtheringtofWE) [5-7]. In the tree lan-
abledy (@)ex (@0)Xed (atbend D) guage, this means that two trees are considered identical if

FIG. 1. The set of rooted, unlabeled binary plane trees correafter a number of successive reflections with respect to the
sponding to all the possible noncommutative, nonassociative brackiertical axes passing through the vertices they can be trans-
etings of the four letter wordbcd n=4. formed into each other and in this case they are said to be

homeomorphid3]. For the example shown in Fig. 1, there
branched structure of diffusion-limited aggregates; see Refire only two such trees, since tregs 2), 4), and § can be
[12] and references therein. In this case the structures atéansformed into each other. The trees that cannot be trans-
grown on a substrat@vhich can be a point or a planey  formed into each other are called nonhomeomorphic. The set
letting small particles diffuse towards the aggregate wher®f nonhomeomorphic trees is called the setaafbilateral
they stick indefinitely at their point of first contact with the trees,[14,11]. Let the number of such trees withleaves be
cluster. This creates complex and involved branched strugienoted byw,. The generating functioGF) defined as
tures, whose topological complexity still remains a challengW(&) ==X, _,&"w, obeys the nonlinear functional equation
ing problem to describe.

Finally, the last application we would like to mention is
known as theword bracketing problenj4] which has obvi-
ous implications in computer science. Let us consider an ) ]
alphabet ofn letters, A={Y;,Y5, ...,Y,} and a wordS  Which has extensively been studied by Wedderf&inOtter
=X;XoXa- - - Xn_1Xn, X; € A. A two-bracketing of the wor@  [3], studying a more general counting problem where the
is a partition of its lettergby keeping their orderin groups ~ Vertices can have at most branches, comes to the conclu-
of two units enclosed in brackets, where a unit can be &on that for the ambilateral trees, rifis large we have
letter or a subpartition enclosed in brackets, such as
(X1X2) (X3(X4X5)), Or X;(X2(X3(XsXs5))), etc. The bracket

(uyu,) between two units may be associated with a multipli-yyhere y=2.4832535--. The method developed by Otter

cative composition lawuyu,) =u; - u; € A. For example, let  gives an iterative approach toand y. For exampleyy is
the alphabetd be all the positive integers, and the composi-

tion law be the regular multiplication of numbers. Then a y= lim Sﬁ‘”' (5)
bracketing of the multiple produ@ corresponds to one par- n—

ticular way of calculatingS. A one-to-one correspondence

can be made immediately to trees: let the lettersvheresy=2, s,=2+s; ; so that forn=4 one already ob-

X1,Xz, ... X, Of the wordSbe associated with the leaves of tains an extremely close value gf=(209 091 83_4. Later,
a binary tree. To a particular bracketing®it corresponds to  Bender developed a more general apprddéh deriving the
a particular tree constructed by associating a lower level versame results. The coefficientin Eq. (4) can also be com-
tex to a bracketingi(;u,) (one may think of the brackets as puted:c=0.31877662--.
representing the branches of the jreehe main question is The more practical application of the bracketing problem
how many ways are there to calculate such a product. If ongithin computer science is the computation of arithmetic ex-
assumes that the multiplication law is neither associative nopressions by a computer. A general arithmetic expression in-
commutative, then the problem is referred to as the Catalawolving only binary operators can simply be mapped onto a
problem; see Ref4] for a number of solutions. The number binary tree, called the syntax tree, which has as leaves the
of such bracketings is given by the Catalan numberspperands and the inner vertices the operators. A computer
traverses this tree from the leaves towards the root and it
1/2n-2 uses registers to store the intermediate results. In general
anza( n-1 ) there are many ways of traversing such a tree, and the pro-
gram that uses thminimal number of registers is the most

The corresponding set of treésee Fig. 1 fon=4) is in fact efficient, or optimal, one. Ershov has shot6] that the

the set of rooted, unlabeled binary plane trees according t_8ptimal cpde will use exactly as many registers to store the
this bijection. intermediate results as the HS index of the associated syntax

For later reference, we mention that the generating func'€€:

tion A(¢)=2_o,&"a, of the Catalan numbers obeys the
equationA?— A+ £=0, with A(0)=0, so

1 1
W(E)= £+ 3 W2+ SW(ED), ®

Wp~ Cn73/2,yn, (4)

In the present paper we investigate how the HS index is
distributed on both the rooted, unlabeled, plane binary set of
trees, and on the ambilateral set of binary trees. We first
1 answer this question on the rooted, unlabeled, plane binary

=—(1-J1— set, since it is simpler, but it will also provide us with a
AL 2(1 1-49). @ technique that can be extended to tackle the problem for the
ambilateral set. For this set, the question was answered by
The power serieA(§¢) converges within a disk of radius Flajolet, Raoult, and Vuillemif17], with a method some-
a.=1/4. what similar to the one presented here. The enumeration
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problem of the HS index on the ambilateral set is, however, JaE—1

inherently more difficult since it involves functional equa- D,(&§)=— ) .

tions with nonlinear dependence in the argument similar to 2sin(2"""arctan/4¢—1)

Eqg. (3), and therefore an explicit solution in a closed form ) ) ) )

becomes impossible to attain. The derivation of an approxiEquation(10) is the exact solution to Ed7) in the complex

mant formula for the number of ambilateral trees sharing thé Plane. On the real axis, within the radius of convergeace

same HS index at the root is the main result of this paper. the __above — expression takes the formD,(¢)
The paper is organized as follows. First we present our V1—4&/[2sinh(Z*'arctan/1-4¢)], é<a.=1/4. Since

derivation of the enumeration problem for the HS index onwithin the convergence disk one must ha¥g_ D, (&)

the unlabeled set in Sec. I, and then use this method of A(&), we just obtained the identifyusing Eq.(2)]

derivation from this case to develop a technique that can be

used to attack the enumeration problem on the ambilateral

set in the asymptotic limit, presented in Sec. Ill. Section IV

(10

[

=coth(x), x>0. (11

is devoted to conclusions and outlook.

II. DISTRIBUTION OF THE HS INDEX ON
THE UNLABELED SET

Let us observe that the ro& of the tree has always two

subtrees attached to it via the two branches, WitAnd n
—k leaves, respectivelk=1,2,...n. Let Nﬂ) denote the

number of unlabeled trees withleaves that share the same
HS indexr at the root. A recursion is found for this number

in the light of the observation above:
r—1 r—1
NEUNE D+ Nﬁ”jé‘,o NG+ Nf{lkgo N{)
(6)
with the conventiondN{’=0, NO=4, ;, N{?=4, . If the

generating function for the variable is defined asD, (&)
=37 "N, then it obeys

n—-1

Np=3

r—1

Dr=Dr2_l+2D,EODJ-, r=1, Dy=&. 7)
=

Next we give an exact solution to E¢). Let us introduce
the sum B,=%[ZoD;, r=1, By=0, B;=¢. Then D,

=B, ,.,—B,, and after rearranging the terms, Eq) be-
comes G,=G,_;, where G,=B?+B,,,(1-2B,). This
means thaG,=Gy=¢, i.e.,

B?+B,,.(1-2B,)=¢, r=0. (8)

Note that the left hand side of E¢8) remains invariant to
B,—1—B, which is another solution of Eq8). However,
since in the case of the HS ind®g=0, this latter solution
has to be dropped. If we makeB2=1—-C,, Eq. (8) simpli-

fies to Cf—ZCrC,+1=4§—1, which after dividing both
sides by £—1, and introducingZ,=C, /{4¢—1, becomes

z2-1

27 9

Z 1=
Let us now write Z,=cot@p,), such that v,
=arctan@4é—1). Then Eq. (9) becomes coif 1)
=cot(Z,) which leads tw, , ;=2v,+7m, me Z, and which

in turn is solved easily. Thug,=cot(Zvg), so one finally
obtains

r=1 sinh(2"x)

This identity can be checked to hold via more direct methods
[25]. The singularities oD, (£) lie on the positive real axis
at

1

(f):—,k:
4cod(km/2' L)

&k 1,...,2-1 (12)

with an additional singularity at infinitfcorresponding to
k=2"). We certainly havet{)>a.. On the other hand, if
one simply iterates Eq.7) we obtain

&
D.(¢§)= :
© 2'P(£)

(13

where P,(€) is a polynomial iné of order Z—1: P(§)
=271-¢, Po(&)=P1(§)(2 ' —2¢+ &), P3($)
=P,(£)(2 1 4£+1082-8¢£3%+£%), ..., etc. One can find
an explicit form for this polynomial from the general solu-
tion (10) if one invokes the identity [26] sin(nx)
=nsinxcosxII{";?q 1 — sirx/sir(k/n)], so that Eq(13) is
recovered with:P, (&) =112 col(km/2' 1) (£"—&). It is
easy to show, however, that?_; col(km/2' *1)=1, so the
polynomial simplifies to

2'—1

P.(o)= I (&"-o),

k=1

(14)

an expression valid on the whole complgplane. Based on
the explicit solution we obtained, one can give an exact form
to the distribution of the HS index on the unlabeled set of
trees, by inverting the generating function via

1 d 1 d 2
NO— b S p o 2 S
277 §n+l 2 §n+l 2]’Pr(§;)
(15
One can write
1 21 AJ(r)
(16)

2P0 B¢
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where A{0=2"Tl-1 (60~ "), j=1,... 2-1. By

Cauchy’s theorem the integrals in E{.5) are readily per-
formed, and one obtains

2'—1
) 2 AJ(T)[gl(r)]—(ﬂ—zr‘*'l) n=2"
Ny'=1 =1 '
0, osn<2"-1.
(17

From Eq. (16) it follows that =2_;*A(/&N=27"/P (0)
=1. To obtain the last equality we used the fo(i#) and
(12). ThusN$)=1, r=1,2,... . ThenumbersA{" can be
calculated as follows. Observe that

§—§ 1

A(r)_ ||m = [ (!
2P 2P

(18)

where we used the L'Haital rule in the last equality. On the

other hand, from Eqg13) and (10) it follows that 2P, (&)

=2&2'sin(2 *larctan/4€é— 1)/\4€— 1. Taking the derivative
of this equation at the poirg", and inserting it in Eq(18)

it yields
. agn -1
A= (- )Jﬂw- (19
Thus we obtain from Eq(17) the more explicit form,
2’1 a1
Nﬁ,”—zm Z (—D) s T n=2", (20

or using Eq.(12),

o 4" 2'-1 j 2n-2
r) _ +1
Nn 2r+1 E ( 1 : S|n2 co 2r+1 !

(21)

an expression derived by Flajolet al. [17]. Following this

paper[17], our polynomialsP, can be simply connected to

the Tchebycheff polynomiall [26], via the relationP, (&)
=272 12y, 0 [1(2V9)].
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structures, usually only one of these limits is selected, and in
frequent cases this limit has self-similar propertissch as
for diffusion-limited aggregatiofiDLA), or for random gen-
eration of binary tree$18]). By definition, the family of
trees that obey Iimﬁm(ln[n(r)])/r=constzIn B is called to-

pologically self-similaf12], whereB is thebifurcation num-
ber.

(i) n—c0 andr fixed. In this case the first term in E@Q1)
dominates the sum and the asymptotic behavior is given by
N~ 27"~ Lan (/2" + 1) en N4coS(#@2 D] The rate of the ex-
ponential growth is a number between In2 and 2 In 2.

(i) N>, r—ow, n/2"—x. Here the first term in Eq.
(21) is still dominant(the rest being exponentially small cor-
rections and yields N{~ 72230+ 1)gn(@ In2=744"") ¢
Jn/2" diverges withr slower than exponential, we have to-
pological self-similarity withB=4.

(iii) n—o0, r—o, \n/2"—d, with some B<d<c. In this
case the rest of the terms in E@1) (after the first has been
factored ouk are of the typgj2e~ U~ 1D7°% and the final ex-
pression is N{?~A(d)4"n=%24". The topological self-
similarity is obvious withB=4. The factorA(d) is given by
A(d) = m2e” " (1—e T H)/(1+e ™93,

(iv) n—o, r—ow, Jn/2—0, andn/2’ —. In this case
the analysis is performed easier from the combinatorial ex-
pression ofN{") and yieldsN{" ~ 7~ 1/2n~5/2gn2 In 2-47n

Ill. DISTRIBUTION OF THE HS INDEX ON
THE AMBILATERAL SET

Let us now analyze the same question on the set of am-
bilateral trees, and denote the number of ambilateral trees
with n leaves and HS index by M{"). We certainly must
have the relation

20 MO =w, . (22)
Figure 2 gives the distribution of the HS index foup to
32 andr=2,3,4,5. We can check easily that” =4, ,, and
M{P=1-4,,, so for simplicity these are not represented in
the figure.
The numbersvi g’) obey slightly more complicated recur-
rence relations since now the counting has to be done on a

If one employs the Poisson resummation formula formore restricted set. We must distinguish between odd and

functions defined on a compact suppte Appendix B in

evenn values. However, the two cases can be combined into

Ref.[27]) on Eq.(21), an equivalent combinatorial expres- one, if the conventlorM(r)—O for v noninteger is adopted.

sion can be derived in the form

" 2n
Ng—?—lzimzlvz (n-l—k) (k)|k:1+(2m—1)2r,

where Vf)(k)=f(k)—f(k—1) is the finite difference op-

erator. For a different method, see REf7].

Scaling limits.Next we briefly present the results of an

asymptotic analysis on the{” numbers. SincN{"” is an

enumeration result, it typically contains several scaling lim-
its. In physical processes, during the growth of branched 2

The corresponding recurrence relation becomes

r—1

Mgr): 2 St M(krfl)M](rfl)_i_E (M(kr)MJ(s)
O<k<j=n s=0
r—1
FMOMO) |+ MELS, ME)

1, )
+ =M, D+ MG ). (23
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AN 2 3 4 5 Wn

sl 2 ) s

1w ) n

8 21 1 %/////////////// %///////////2 23

9 42 3 %////////////% %////////////% 46

o s | v il » ﬂ

11 170 36 2./ /77| 5

120 w N 4

13 682 300 %////////////% %////////////% 983

141 1365 313 2/ /7| un FIG. 3. The generating functioN'g(£¢) on the real axis. The

15 2730 2119 %////////////2 %//////////f//; 4850 function was evaluated in more than X.30° points, and repre-

16| 3461 5442 1 % 10905 sented by dots.

7] oz | 13704 s ] wen IV, = (7 Vi) 2= =7 V2, one findsG(&) =&+ 3[G(£)]?

18] 21845 34142 s Z//{///{///{// S6011 +%G(§2)(, whic)h is precisely Eq(3), s(hc))wing trEatEB()g)

19| 400 | s w [ ) e —W(¢), i.e., the relatior=”_ oV, (£)=W(£) holds, indeed.

20| 87381 205741 wa 777777 | 29341 In contrast to the previous case, the functional recurrence
2| q7aen | 499777 w617 |\ erest (24) cannot be treated in an exact analytical fashion due to
2| au0sas | 1207954 ss2 [ s the functional dependence @f. However, one can derive
33| eososo | 2906779 05 07| sz Ehe atshymptlotic behavio_r ar;_d makfe tstn;%:a)mentsbthat \ﬁ[’”-l lead

7 o rather close approximations o n’/ numbers. It is

z: ;Z:;E; 166967607?:9 26176563; % f:;z; instructive to Iookpgt a few particular values, first:

26| 5502405 | 30757008 | 676214 |77 N sc026618 £

27 11184810| 94646973 | 2058825 %////////////% 107890609 Vi(é)= lfg

28 | 22369621| 224041421 | 6139668 || 253450711

29| 44739242| 533857098 | 17976046 ||| soes72387 4

30 89478485| 1265538285| 51801988 ///////////////% 1406818759 VZ( g) — f— , (25)

31 178956970| 2997087184 | 147192083 %/////////////% 3323236238 (1726)(1762)

32 357913941 7091960757 413083691 1 7862958391
FIG. 2. Particular values for the number of ambilateral trees V3(§)=§8 1728+ & +ad -3¢

with n leaves and HS indeix The shaded entries mean that there is
no such tree.

The generating functioW,(£)=37_,£"M{" will thus obey

1[V,_ 24V, (&2
Vr(§):§[ 1(&311 1(5),

1—520 V()

r=1,

(24

andVy(&) = ¢. As a check for the correctness of Eg4), let
us see if we recover the identity,_,V,(£) =W(&) [which
follows from Eq. (22)]. Equation (24) is equivalent to
2V, (&) =25 VIOV H(O =V, _1(8 T2+ V,_1(£). Intro-
duce the temporary variableG(¢)=2_,V,(§) and
sum both sides of the equation ovey r=1,2,... .
One  obtains  2G(&)—¢&)—23_ SITgVs(&)V(§)
=37 [Vi(&)]?+G(£%). Using the identity Z; ;S

(1-2£)(1-28)(1—¢M(1—3E+4£8— ¢4

Inverting  V,(£), one obtains: M{®@=[2""1-3
+(—1)""4]/6, n=4, which can be checked to hold; see Fig.
2. The result from the inversion &f5(€) is already so com-
plicated that it is not worth presenting. As the indexn-
creases, the polynomial expressions become more and more
involved. Figure 3 shows the functiong(£) in the interval
[—2.0,20.

For everyr, the power series fov, (&) has non-negative
coefficientsM{V=0. Based on a classic theorem of complex
analysis, this means that on the circle of convergence, of
radius «,>0, there will be a singularity ofV,(¢) at &
=a,. Next we show that we have the ordering<@,, ;
<a,<1 for r=2, and the limit lim__a, exists and it is

equal to a=1/y=0.402697 5036 -. We shall use math-
ematical induction to prove the ordering. From the particular
examples above it follows that,=0.5, a3=0.424507--.
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Let us now assume that<«;_,<1 forallj<r, j=2. We  Since the seriea, is monotonically decreasing, and bounded
will show that a,,;<a,. Note that the radius of conver- from below, the limita=lim___a, exists.

gence.forvj(gz) is Va;>a;, if o is less than unity. By We have shown that;"_,V,(&)=W(&). Since the radius
reductio ad absurdumlet us assume first, that,.,>a:. ¢ convergence for the left hand side is the minimum of all
This means, thaV/ . ,(¢) is analytic ina, . From EQ.(24),  he radii of the terms in the summation, i.e., it must equal
V2(£)+V,(£2) to the radius of convergence fa¥(¢), which, as shown by
! ! _ (26 Otter and Bender is % lm __a,=a=1ly
1-Vo(&)—---=V,(§)

=0.402 6975036 - . Taking the limitr —« in Eq. (27), we

By the argument abov&/,(£?) is analytic ina, (its radius of ~ 9€t

convergence isya,>a,, since by assumptiom, <a,_, W(a)=1 (30
<.--<ayp,=1/2<1). In the denominator of Eq(26), all

functionsVj, j=0,1,...r—1 are analytic inv,, because by [since by definitiorB,=2_,Vs, so lim B, =W(£)]. Or,
assumption they all have radii of convergence strictly larger . o
than«, . However,V, is singular ina, , and the singularities using Eq.(3),

do not cancel in the numerator and denominator of (26), W(a?)=1-2a, (31)
and thusV, , ; is singular in«, , a contradiction. We are left

to prove thata,,;=a, cannot hold. Let us denot8, an identity also shown by Bender. EquatidB4) and(3) can
=3{_,Vs. Again, we assume that,,,=e, is true. It is  simply be combined to give the iterative computatiorah
easy to show that for arfinite r, |V,(a,)|=%. This means the form already mentioned in the Introduction, as follows: If
from the recurrence relation that we make the temporary notation

B, 1(a;)=1 (27) U(&)=[1-W(&)VE, (32)

[in the numerator of Eq24) we have only functions analytic Eg. (3) takes the form
at a,]. SinceV, ,1(&)=[V{ (&) +V,(£)1/[1-B,(&)], from o2
the assumptiony, , ;= «, it would follow that the equation U(£9)=2+U¢), (33
B,(x) =1 cannothave any solutions\{;, ; is analytic within
the circle of convergengen the interval 6<x<a, . [Note
that in the interval &x<ea,, the numeratorvrz(g) U(a?)=2. (34)
+V, (&%) cannot be zero, since the power selgshas only
positive coefficientd.The equatiorB, (x) =1 is equivalentto ~ Let S(x)=2+x Then, from Eq(33) U(¢%)=S[U(£)], or
B,_1(X)+V,(x)=1. However, from Eq.24) 1-B,_1(x) U(&)=SU(Y)]=S[JU(EY¥) =S{---FJU(& )]---},
=[Vr2(x)+vr(x2)]/V,(x). Thus the equation where there are a total of compositions for the function,
n arbitrary. Let us now choos&= """, This means
n+1
U(a? )=9{-- -JU(a?)]-- d=9{---[S(2)]- 'Ell by
should have no solution inOx< « . If xis arbitrarily close ~ Virtue of Eq. (34). From Eq. (32), U(e® )=[1
to a,, thenV?(x) is arbitrarily large. However, since,_, —W(a? )]/a?. We have shown previously that<1 (it
>a,, Vf,l(x), andvrz,l(xz) are both bounded from above. is the limit of the monotonically decreasing series<1),
Thus, for x sufficiently close toa,, we have V¥(x)  therefore we have
>V?2_,(x)+V,_1(x?). On the other hand, the HS index of a b1\ 9N
(1—vv(a2 ))

Viri(§)=

and Eq.(31) simplifies to

VZ(X)=VZ_ 1 (X)+V,_1(x?) (28)

tree T equals to the height of the largest, complete, balanced

— | —lime2 "
tree embedded inT. This means thatM{’=0 for n a_r!m n r!'f:os” 39
=0,12...,2—-1. Also, M(zrr)=1. In other words, one must
. n+1
haveV,(x)=x2 1+ O(x)]. since W(a” ") —W(0)=0, and wheres,=S(s,-1), So
This means thatV?2 1(x)=x2r[1+(9(x)] V,_1(x?) =2, just as in the Introduction. The convergence is double
r— ! -

ot 9 2 N ot o ) exponential, very fast.
_2X [1+0(x )]’2 fnd Zer(X)_x X [l+(’)(.x)]. Since As in Sec. Il, the asymptotic behavior of tihé{"”) num-
Vimi(3) + V1 (x) =2x7[1+ O(x) ], there will always be  pers for relatively large andr is governed by the innermost
anx>0, (x<1), sufficiently close to zero, such thef(X)  singularity ofV,(£) on the real axis. The graph % shown
<VZ_;(X)+V,_1(x?). Therefore there must exist an<X  in Fig. 3 suggests that the generating function is, in fact, well
<a,, for which Eq.(28) holds, which is a contradiction. behaved in a certain interval to the right of the radius of
Thus we have proven thatOa, <, <1, forallr=2.As  convergenceyg; see also Fig. 4. The existence of this inter-
a matter of fact we have also shown that the radii of converyval comes from the fact that the singularities of the term with
gence satisfy nonlinear argumenV, _;(£2) in the numerator of Eq(24)
5 ) 5 kick in only beyond the circle of convergence 6f_ (&),
Vilar ) =Vi_a(ar ) +Vica(ariy), 1= (29 which is Ja,_1>a,_4. Thus in the intervaky, <x<a,_;
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e 0.35 0.4 0.45 0.5 0.55 0.6 0.65

o ¢ vou

FIG. 4. A magnified region of Fig. 3. The arrows indicate the ~ FIG. 5. The functions, () are analytic or. This figure shows

positionsa=0.40269 - - and Ja=0.63458 - - on the real axis. ~ Nr(§) for r=1,2,3,4,5,6. The convergence orio h(¢) is double
exponentially fast. The thick vertical lines delimit the edges of the

intervall. Close toa, theh, functions cannot be distinguished bn
for r=3. To the right froml the h, functions develop singularities.
The point Ja is a left accumulation point for the series of the
left-most singularities oh, (&) asr—o.

the term with the nonlinear argument is analytic, which ulti-
mately is responsible for this nice behavior. Because
<a,_4, for convenience we shall define the interval of this
nice behavior to bé=[a,/a). In order to exploit this ob-
servation, we shall first rewrite the recurrence relaiia4).
Let us denoted . (¢) = 1— =L~ 2V(£). With this notation, Eq. H.(£)= Vh(8)col 2 "oarcta vh($) (40
(24) takes the formG,(&)=G,_1(&), r=1, whereG,(¢) ' H, ’
=HZ(&)—2H,(&)H, . 1(&) +H,(£?). This leads to the new

"o

recurrence: wherer, for the moment is an arbitrargpositive integer
) ) index. Recurrenc€39) will become a good approximation to
HY (&) —2H (HH+1(6) +H (£ =2¢, (36)  the recurrencé36) from an indexr, on. The larger is the

more accurate the approximation. Recurre(8® is applied
Ho(&)=1. This would be exactly solvable if it were not for

) th ith initial ditionH, =H , Which f d-
the dependence on the nonlinear argum@&ntNote the re- en with initial cond |on. r0(§) . ro(f_) whie or_mo
semblance to Eq@). Let h,(&)=2&—H,(¢2), which is an estry values can be obtained by iterating E86) r times.

analytic function inl. We also have Ah,(&)=h, (&) What is the errgr we make when one replabgg<) W'_th
Ch,4(8)=V.(£2) = &1+ O(£2)], the latter equality be- N(§) on1? Summing the difference87) from ro+1 to in-
ing shown previously. This shows that in the interlather finity, ~one  obtains the estimate h(¢)- hfo(g)
dependenceneakens extremely fastiouble exponentially <a?°S%_ 02 @™ D<a?9/(1-a?). Thus, for example,
with increasingr. As a matter of fact, an upper estimate is h(¢)—hg(¢) is smaller than 107, h(&)—hg(&) is smaller
than 10 13, etc.

Ah(§)=<a® . (37 Therefore we can finally write oh
In  particular, Ah3(£)=<0.0263, Ah,(£)=<0.0006916, VW( 57) +2&-1

Ahg(€)<4.79X 1077, Ahg(£)=<2.28X 10713 Ah4(&) Vr(f)zsin{zrﬂ‘rOarctalﬁ W(§2)+2§—1/Hr0(§)]},

<5.22x 10 25, etc. Therefore, from the point of view of the
asymptotic behavior, thé, functions can be replaced by

their asymptotic expressiofasr— ): r>ro, &el. (41)

In Fig. (6) we plot the right hand sidérhs) of Eq. (41)
and theV, function from iterating Eq.(24). Note that the
Figure 5 shows the functions, on the intervall for r a_mppr(_mmanon is very good, and_|t becomes wr_tually indis-
—12345.6. tinguishable from the true function the closgris to a.

S Largerry values will also give better approximations, since
the approximation is only applied from thg, index on.
TN _ However,r, cannot be taken too high for approximation pur-
Hr(§) = 2H{(OHr+2()=h(¢). (39 poses, since it assumes that the exact expressisfy ofor

The recurrencé39) in turn is easily solved in the way shown V:,) is known. This makes only the modest values(less
in Sec. |. The result is than 5 useful. On the other hand, expressi@H) is very

h(&)=W(£)+2¢-1. (38)

Thus, instead of E(36) we will consider
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1 i 4 :‘:" ﬁ:;'
Vg 05 | %
05 " | f(2)
' 0
0 %
08 _6 q oo Loows
04 045 05 055 E., [ ::g :
- g -1 . , ) . ) ) __sin(x) — 1
‘ ‘ . o 1 2 3 4 5 6 7 8 9 10
15 i z
4 . . .
045 05 (t’ 055 06 FIG. 7. The goodness of Eq42). For x and # we used the
values derived in the text.

FIG. 6. The trueV, (&) function (dashed lingfrom iterating Eq.
(24), and the approximation in Eq41) (solid line) for r=8 with

ro=3, andr =3 with ro=2 (the inseL largerrg values. Figure 7 shows the agreement of the form
given in Eq.(42). For clarity, we defined the functiof(z)
given by

practical in analyzing the singularities d and give rather

close approximant expressions to these singularities. In par- z

ticular, we see that within the interval Eq. (41) preserves “ ta or+1

the property that ifa,, is a singularity ofV,, (or a zero of f(z)= 7 (45

H,,) then it is a singularity oV, (or a zero oH,), whenever v 2 ( z )

, g . - : | a+ 0 %tar?
r>r’. If one is interested in the asymptotic behavior, then a or+1

more tractable expression can be derived for the rhs of Eq.

(41): the functionh(¢§) is analytic on the intervdl, and since  Here we use the trué, function using numerical iteration of
already for modest values, the innermost singularity of Eg. (24, and evaluate it in the pointsé=a
(denoteda;) is extremely close te, one can safely replace + g~2tarf[z/(2"*1)]. If the approximation(42) is good,

h(£) in this neighborhood by(£§)=h"(a) (¢~ a). then one should havi(z) =sin(z). As seen from Fig. 7, the
This leads to the approximant approximation is already excellent far=4 close to «
(which corresponds to the=0 point in this ploj. The inter-
uNéE—a val | in these transformed coordinates corresponds
Vr(g):Kr(g)E . r+1 , e r+1 w/\/—_ _ r+1
S“'{Z arctam 0,/§_ a/)] to [0,2 arctan(9 o a)]— (0,0577 435488 2 )

(42)  There are no fitting parameters, we used forand ¢ the
values derived above.

for sufficiently larger (here “large” means =4) where In order to obtain the approximation to timember M’
of ambilateral trees with the same HS index at the root, we
h(a) will have to invert Eq.(42). The singularities of the rhs of

= (a), 6=——-. 43 EQq.(42) are given by
B 0 43

km

=+ 02tar12( ) k=12,3...,2—-1 (46

Next, we computd’ («). One can use a very similar method
to the one employed to obtain E@5), to give

2r+1

[at the moment we do not care whether some of the singu-
larities will fall outside the interval, we just simply want to
invert Eq. (42), and then at the end keep only those terms
from the final expression that were generated by the singu-
larities within|].

In a similar manner to the previous section, we first bring
K, to an inverted polynomial form:

. Sn
h'(a)=lim
n—o>0°1" " "9On—1

=3.1710556--, (44

so, u=1.780745815 - . If one computed for r,=3, we
have Hi(a)=(1-3a+4a®— a®)/(1-2a— a?+2a°)
=0.164518--, and thus#=1.3530022-- . If we were to
usery=4, then one would obtaifl 4(«)=0.082 262, sod 5 o
=1.3529529245 and slightly improve the approximation K, (&)= “[1+€+(1§_ )] , (47)
on #. No significant improvement will be obtained with 219277 71Q,(¢)
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where Q, is the polynomial:Q, (&)= H2 eV —¢). The  singularity. However, if we want to approximate the")
case from the previous Sec. Il correspondsute1,§=2, numbers, we should also account for the conditigfh)

and a= 1/4. Thus if we denote b1 the numbers coming < Va. Using the expressio6), this leads td <J,, where
from the inversion oK, (¢), then
2r+1
J,=——arctari 6\ Va— a)=(0.183803525 0 -) x 27 L.
an
(48) (54)

Thus, using again Eq46),

Co__ k1 [ de 1+ R a2
n _02r+l_1 2170 gr‘H—l 2r+1Qr(§) '

We have
2-1 (r) jm
Al tart| — || 1+tar?
— 2rﬁ71 — E (r)l ’ with — w [J] o 2|’ r+1
217 IQué) =g -¢ MP=——2> (-1) —— T
2'6° j=1 72 Ky
2'—1 a+ 0 %tar?
A(r) M H 1 2r+1
j 2r+l(92r4rl 1||<( 1 g(r)_g(r) (59
#]
(49) When the asymptotic limit is generated by the innermost root
a,=&" | ie., by the first term in Eq(55), one obtains for
After performing the integrals, one obtains the topologically self-similar ambilateral trees, the scaling
behavior
2r— min{n,2"} 2
243
M= 2 A(r)[f(r)] -1 E (m)(l M~ 2"“73d e7w2d2/a02n73/2,yn (56)
af
22" —mr g2 £(r)ym
@)= O] 50 and therefores= y=1/a=2.483 2535 -
This expression shows that trﬁf{) may only approximate (Ir_)et us now see how well formuléb5) approximates the

. o g numbers. To do this, we shall define the erf}’
theM (") numbers in a certain limit. This is seen from the fact " — of

VIR VIGIVIVIO) 0
that while one must hav1()=0 for n<2', andM(Z'r)zl, [IMy’ =My’ |/IM{’]x 100%. For example, from the Table

. . 4 .
this is not respected by E¢O0) (it would only be respected 'ﬂ F'g 2, M3,=413083 69%4) The formula above gives
if a= 02, however, this is not the case, and the reason beM$? =445 781858, and thu®{))=7.915--%. Further error
hind this discrepancy is the neglected nonlinearity from thevalues: Q{2h=5.3412 ... %, Qfl=0.05391--%, Q)
calculation$. The limit, in which the approximation becomes =0.003551--%.
good, is forr large (it meansr=4) andn>2". In this case

the sum ovem can be performed, and one obtains IV. CONCLUSIONS AND OUTLOOK

Combinatorial enumeration of trees is typically difficult to
_ . solve when the set under enumeration obeys symmetry-
MG = > ADTENT 1+ 6% -a)]?. (51  exclusion principles, such as for the ambilateral case treated
=1 here. These symmetry-based constraints may arise in realistic
TheA(r) numbers can be calculated in exactly the same Wa)§|tuations and thus forces us to enumedsssesnf subsets
we d|d in the previous section. This leads to of trees. In the ambilateral case a class is defined as being
formed by those binary trees that have the same number of
leaves and HS index at the root and can be obtained one
from another via successive reflections with respect to the
nodes of the tree. Certainly, the symmetry operation defining
the class must be an invariant transformation of the topologi-
Inserting it into Eq.(51), it yields cal index (HS in our casg Another example of such
symmetry-operation-generated class enumeration is the case
o 2, () " of the _“Ieftist fcre_e-s” playing an important role in the repre-
o Z (- ]+1[1+ 0°(&'—a)](§ —a) sentation ofpriority queues shown by Cran¢19], followed
org = [gj(r)]m—l ' by Knuth [20], who glves'the|r epr|C|t'def|n|t|on. An eIegan.t
(53) enumeration for the leftist trees, using generating function
formalism, was only given very recently by Noguejél].
As a check to the correctness of E&3) we can takeu The existing solutions to such class enumerations on trees
=1,0=2, anda=1/4 from the unlabeled case, to obtain Eq. (such as ours and that of Flajokettal. [17] and of Nogueira
(20). Equation(53) explicitly shows the contribution of each [21]) are obtained via methods tailored for the particularities

2'—1

w(E—a)
29[+ (&0 - )P

AN =(-1)i*2 (52)
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